
OB-STM: An Optimistic Approach for Byzantine
Fault Tolerance in Software Transactional Memory

Tulio Alberton Ribeiro
Department of Informatics and Statistics

Federal University of Santa Catarina

Santa Catarina, Brazil

tulio.ribeiro@posgrad.ufsc.br

Lau Cheuk Lung
Department of Informatics and Statistics

Federal University of Santa Catarina

Santa Catarina, Brazil

lau.lung@inf.ufsc.br

Hylson Vescovi Netto
Department of Informatics and Statistics

Federal University of Santa Catarina

Santa Catarina, Brazil

hylson.vescovi@posgrad.ufsc.br

Abstract—Recently, researchers have shown an increased in-
terest in concurrency control using distributed Software Transac-
tional Memory (STM). However, there has been little discussion
about certain types of fault tolerance, such as Byzantine Fault
Tolerance (BFT), for kind of systems. The focus of this paper
is on tolerating byzantine faults on optimistic processing of
transactions using STM. The result is an algorithm named OB-
STM. The processing of a transaction runs with an optimistic
approach, benefiting from the high probability of messages
being delivered in order when using Reliable Multicast on a
local network (LAN). The protocol has a better performs when
messages are delivered ordered. In case of a malicious replica
or out-of-order messages, the Byzantine protocol is initiated. In
smaller scenarios and using an optimistic approach, the protocol
has a better throughput than Tazio.

I. INTRODUCTION

The Distributed Shared Memory (DSM) systems hides the
remote communication mechanism from the application devel-
oper [1]. It could be described as a virtual address space that
is shared by a number of processors [2]. In DSM systems, the
processor accesses every memory address as if it were local.
The system allows coherent data sharing through an uniform
way of read and write (lock-based synchronization) to shared
structures in the common memory. As an alternative to lock-
based synchronization, Software Transactional Memory (STM)
systems offers a concurrency control mechanism through trans-
actions, which are analogous to the database transactions for
controlling access to shared memory in concurrent computing.

Researchers have shown an increased interest in concur-
rency control using distributed STM [3], [4], [5], [6], [7]. The
programmers that use STM take advantage of the fact that it
is not necessary to deal explicitly with concurrency control
mechanisms, like mutual exclusion algorithms. Instead, they
have only to identify which parts of code need to be treated
as transactional. This allows programmers to focus on global
operation of application, rather than explicit mechanisms of
concurrency control. The STM application is responsible for
contention management as well.

However, there are few STM architectures that support
fault tolerance in the literature [3], [4], [5], [6]. Furthermore,
none of the proposed architectures takes into account the
high probability of messages being delivered in order. This
characteristic allows the construction of optimistic systems,
which explore this when using Reliable Multicast on LAN
[8], [9].

Only the Zhang’s [7] work mentions about Byzantine fault
tolerance on the context of STM. The architecture of Zhang is
divided in two clusters, one for agreement (3f + 1, where f
means the number of faulty replicas) of messages and the other
for transactions execution (2f +1). This approach does not use
optimistic delivery of messages by the network and does not
allow transaction execution without Byzantine protocol.

This paper presents OB-STM, a Byzantine Fault Tolerant
protocol using an optimistic approach to Software Transac-
tional Memory. The proposed protocol is based initially on
parallel executions of non conflicting transactions, resembling
to Kotla [10]. In case of out-of-order messages or malicious
replica, the order of transactions is defined with the protocol
proposed by Castro [11]. The OB-STM initiates with high
probability of messages being delivered in order by the local
network using IP-Multicast [8], [9]. While running in local
networks, the protocol can explores replica determinism by the
use of an optimistic approach. If the messages are delivered
into the same order to all replicas and there is no malicious
replica among them, then there is no need to begin execution
of Byzantine protocol.

The order verification of delivery messages occurs on
committing transactions stage. On this stage, a verification
message is sent to all replicas. If all replicas return affirmative
for the request 〈AskForCommit〉, the transaction can be
committed. If there is a malicious replica or some replica does
not return positively the request confirmation, the Byzantine
protocol is initiated to determine the order and execution of
transactions. The order is based only on conflicting and out-of-
order transactions. An example of transactions out-of-order is
when one replica executes transactions t1 and t2, and another
replica executes t2 and t1.

The OB-STM was built using the JVSTM [12], the JVSTM
is a library that use MVCC (MultiVersioning Concurrency Con-
trol) as concurrency control mechanism. The JVSTM library
allows for an optimum performance for read-only operations
because they do not abort. Also, it uses a deferred update1 as
conflict verification; however, we use a different approach: an
eager conflict detection named Parallel Transactional Analyzer
(PTA) detailed in section V-D.

The paper has been organized in the following way: Section
II presents related works. Section III describes systems and

1Deferred update: conflict verification is done only at commit phase.

2013 III Brazilian Symposium on Computing Systems Engineering

2324-7894/14 $31.00 © 2014 IEEE

DOI 10.1109/SBESC.2013.31

11

definitions, protocol execution (optimistic and conceptually
Byzantine) and execution flows. Section IV displays the al-
gorithm executed in the replicas. Section V presents global
and local verification, life cycle of transactions and Parallel
Transactional Analyzer. Section VI exhibits the results and
evaluation. Finally, section VII concludes the paper.

II. RELATED WORK

Dependable Distributed Software Transactional Memory
(D2STM)[3] implements a transactional memory system in
distributed fault tolerant software. It tolerates crash faults, uses
atomic diffusion for communication between replicas and 1-
copy serializable for data distribution. JVSTM [12] works as
the base for transactions executing, and read-only transactions
are never aborted. Bloom Filter detects conflicts in reading
and writing operations. D2STM’s architecture uses Atomic
Broadcast as message passing method, but does not take
advantage of probably correct ordering of messages supplied
by the use of local networks.

Tazio [5] tolerates crash faults in Software Transactional
Memory. A Reliable channel is assumed among replicas for
message exchange; but between client and replicas it is not
required. The consistency between replicas is ensured by the
property 1-copy serializable and the protocols write-update
and write-invalidate. To manage conflicts it uses MVCC and
version boxes [12]. When a writing transaction begins, it
receives the Sequence Number (SN) of the last committed
transaction plus one. This transaction can commit if it has
a SN greater than the current SN. If the commit transaction
succeeds, the current SN is updated. The model does not abort
read-only transactions.

RAM-DUR [6] is a mechanism of distributed cache with
high performance that uses strong data consistency. In tradi-
tional distributed databases, data are partially in memory; if
required data is not in memory, disk access needs to be done.
In the RAM-DUR database is divided among all replicas. In
case of data that is not in memory, network access needs to be
done. Only one replica executes the transaction in an optimistic
approach, and in case of success it sends the writes and reads
sets to the remaining replicas. The model tolerates crash faults.

Zhang [7] uses separated clusters for agreement and exe-
cution (STM). The agreement cluster establishes an order for
all transactions and forwards them to the execution cluster.
After execution, results come back to the agreement cluster
where validation occurs, which could be: abort or restart the
transaction. It is not possible to run nested transactions, and
neither to execute transactions in parallel. There must be
3f + 1 replicas to provide Byzantine Fault Tolerance. The
library LSA-STM (A Lazy Snapshot Algorithm with Eager
Validation) [13] is part of implementation; it aborts read-only
transactions and uses Compare and Swap in validation phase.
Synchronization algorithm in Zhang has the property lock-
freedom that avoids deadlock, but allows starvation. The Zhang
protocol ignores network characteristics.

Table I presents related works and the proposal. The
columns refer: related works, uses atomic broadcast, tolerates
byzantine faults, number of replicas, can abort a read-only
transaction at the end of execution, technique for verifying
conflict among transactions and publication year.

The validation phase is done usually on commit time;
our approach uses another verification method, we do the
analysis before execution. This verification is done initially
to reduce transaction re-execution. Atomic Broadcast is used
in [3], [5], [6], [7]. Our protocol uses an adaptive approach: the
Reliable Multicast is used in optimistic execution, and Atomic
Broadcast is used in Byzantine phase if necessary. OB-STM
does not abort read-only transactions and uses 3f + 1 in all
protocol. The last line refers to our contribution.

A-B Byzantine. Replica. A-R Validation Year

D2STM Yes No >1 No
Bloom
filter

2009

Tazio Yes No >1 No
Seq.

number
2010

RAM-
DUR

Yes No >1 No
Bloom
filter

2012

Zhang Yes Yes
3f+12;
2f+13 Yes CAS4 2012

OB-STM Adaptive Yes 3f+1 No PTA
TABLE I. RELATED WORKS AND THE PROPOSAL.

III. MODEL AND DEFINITIONS

This section describes the basic definitions of system and
its architecture.

A. System definitions

We consider a classical asynchronous distributed system
[14] consisting of a finite set of non-Byzantine clients C =
{c1, c2, ..., cn} and a finite set of replicas R = {r1, r2, ..., rn}.
The replica set communicate to each other through message
passing and can fail according to the Byzantine failure model
[15], and at most f replicas can fail.

A faulty replica or Byzantine, can stop sending messages,
send messages out-of-order, omit to send or receive messages,
delay messages and corrupt messages. All messages are signed
and exchanged through a reliable channel.

The proposed protocol uses pre-declared transactions. The
client needs to send all transactional code to the OB-STM
replicas. The underlying properties of JVSTM, such as weak
atomicity and opacity, are preserved by the OB-STM protocol.

B. System Architecture

Figure 1 provides a high-level overview of the architecture
of an OB-STM replica. The OB-STM component receives the
request of clients and does conflict analysis. This analysis
results in two possible states: Executing or Waiting. In the
Waiting state the transaction has a conflict; In the executing
state the transaction is forwarded to the JVSTM layer, where
the transactions are processed and the execution flow is re-
turned to the OB-STM layer.

IV. ALGORITHM OB-STM

The proposed algorithm has been divided into three parts:
Algorithm 1 Variables, the part that contains the variables used

2Agreement.
3Execution.

4Compare and Swap.

12

Fig. 1. Replica architecture of OB-STM instance. For f = 1.

on the algorithm; Algorithm 2 Replica, which contains opti-
mistic execution code, conflict detection, catch write and read
sets of transactions and commit transactions; and Algorithm 3
Byzantine Replica, which determines the execution order and
the re-execution of transactions.

The proposed protocol assumes ordered delivery of mes-
sages in the network (i.e. IP-Multicast in local networks), due
to the high probability that messages can be received in the
same order by all replicas [8], [9].

When operating optimistically, presented in Figure 2, the
client sends a 〈REQUEST 〉 message to all replicas using
reliable multicast (step I). Each client generates an UUID5 to
identify the transaction request. When the message is received
(line 1 algorithm 2), the GetWxRx function (line 6 algorithm
2) stores the set of writings and readings, and the PTA function
(line 11 algorithm 2) verifies if there are conflicts (step II). If
there are no conflicts with transactions that are executing or
waiting (line 16 algorithm 2), or if there is only one transaction

in the set
∏T

, then execution starts (line 22 or 32 algorithm
2). At step III, the replicas individually initiate and execute
transactions without exchanging messages. When the execution
is finished, an attempt for a commmit of the transactions is
issued.

When trying to commit (step IV), the replica sends a
message 〈AskForCommit〉 (line 41 algorithm 2) to its peers,
asking permission to confirm the transaction. If the replica
receives (3f) confirmations (line 54 algorithm 2), the trans-
action is confirmed and removed from the set of pending
transactions. The set of writings and readings of the transaction
are removed as well. As an example, suppose that all replicas
receive Tx, Ty and Tz in this order, and all three transactions
are conflicting; all replicas should start executing the Tx
transaction. When an 〈AskForCommit〉 message arrives,
each replica should look for a transaction Tx that is in the
executing or confirmation phase. If a transactions Tx is found,
the replica returns OK! (line 47 algorithm 2), else returns NOK!
(line 49 algorithm 2). In step Va, the answer is sent to the client

(line 66 algorithm 2) and first element of
∏T

, if transaction
exists, it is forwarded to the PTA (line 67 algorithm 2).

Whenever replicas receive out-of-order messages or there
are malicious replicas, NOK messages will appear, as presented
on Figure 3, step IV. If replicas do not receive at least 3f con-
firmations (line 56 algorithm 2), Byzantine phase starts (steps
Vb, VI and VII). The replica that started the confirmation
phase sends a 〈PRE − PREPARE〉 message to the peers

5UUID - Universally Unique Identifier

Algorithm 1 Variables

1:
QR � Replica Set

2:
QReply � Reply Set

3:
QT � Transaction Set, Pre-Declared

4:
QC � UUID-Client Set: unique identifier

5:
QW S � Write Set of Transactions

6:
QRS � Read Set of Transactions

7: BCO � Buffer Commit Order
8: f � Number tolerated faults
9: timeout � Timeout of wait replica response

Algorithm 2 Replica

1: upon: receive(〈 REQUEST, Ti, Ci 〉) from client
2:

QT ← QT ∪(Ti, Ci)
3: Call GetWxRx(Ti, Ci)
4: Call PTA(Ti, Ci, false)
5:
6: function GETWXRX(Ti, Ci)
7:

QW S ← QW S ∪ (getWriteSet(Ti), Ci)
8:

QRS ← QRS ∪ (getReadSet(Ti), Ci)
9: end function

10:
11: function PTA(Ti, Ci, Analyzed)
12: if (size(

QT) >1) then
13: if (Analyzed = false) then
14: initExec = true
15: for all Tj ∈ QT minus Ti do
16: if (WS(Ti) ∩ RS(Tj) �= ∅) ∨ (WS(Tj) ∩ RS(Ti) �= ∅) ∨ (WS(Ti) ∩

WS(Tj) �= ∅) then
17: initExec = false
18: stop for all
19: end if
20: end for
21: if (initExec = true) then
22: Call EXEC(Ti, Ci)
23: end if
24: else
25: if (size(BCO) >0) then
26: Call RE-EXEC(getFirstElement(BCO), Ci)
27: else
28: Call EXEC(getFirstElement(

QT), Ci)
29: end if
30: end if
31: else
32: Call EXEC(Ti, Ci)
33: end if
34: end function
35:
36: function EXEC(Ti, Ci)
37: set Ti as running
38: begin execution
39: if (Ti to try commit) then
40: set Ti as committing
41: ReliableMulticast(〈ASKFORCOMMIT〉, Ti,

QR, Ci)
42: end if
43: end function
44:
45: upon: receive(〈ASKFORCOMMIT〉, T i, Ri, Ci) from replica
46: if (Ti can commit) then
47: ReliableUnicast(〈R-ASKFORCOMMIT〉,Ti, Ri, Ci, ”OK!”)
48: else
49: ReliableUnicast(〈R-ASKFORCOMMIT〉, Ti, Ri, Ci, ”NOK!”)
50: end if
51:
52: upon: receive(〈R-ASKFORCOMMIT〉, Ti, Ri, Ci, Reply) from replica
53: acceptCommit ← WaitForAcceptance(timeout)
54: if (acceptCommit = 3f) then
55: Call CommitT (Ti, Ci)
56: else
57: //Begin Byzantine protocol.
58: TO-Deliver(〈PRE-PREPARE〉, Ti, Ri, Ci, ORDER)
59: end if
60:
61: function COMMITT(Ti, Ci)
62: Commit transaction Ti!
63:

QT ← QT \ Ti
64:

QW S ← QW S \ (getWriteSet(Ti), Ci)
65:

QRS ← QRS \ (getReadSet(Ti), Ci)
66: SendReliable(〈REPLY〉, Ri, Reply, Ci) � Send reply to client
67: Call PTA(getFirstElement(

QT), Ci, true)
68: end function

13

Fig. 2. Optimistic execution.

(line 58 algorithm 2), proposing one execution order for the
conflicting and out-of-order transactions. Using the PBFT[11]
protocol, 〈PREPARE〉 and 〈COMMITORDER〉 mes-
sages are exchanged (lines 4 and 11 algorithm 3). At the
end of the Byzantine phase, execution order was established
(line 16 algorithm 3) and stored in the buffer BCO. After the
establishment of transaction order, the protocol enters in step
VIII for re-execution of transactions if necessary.

Re-execution occurs in RE-EXEC function (line 29 al-
gorithm 3), where transactions are executed and committed
without exchanging messages. If a replica has transactions
executed in the same order as defined by the Byzantine
phase, re-execution will not be necessary for this replica. This
comparison is made between transactions that are running and
the transaction in the head of buffer BCO (line 22 algorithm
3). In case of differences (line 19 algorithm 3), re-execution
is necessary (line 20 algorithm 3). After this procedure, an
answer is sent back to the client (step IX).

Fig. 3. Non optimistic execution, and replica R2 is malicious.

V. OB-STM TRANSACTIONS

In this section we present the life cycle of transactions,
global and local verification, and the Parallel Transactional
Analyzer (PTA).

A. Life cycle of transactions

Figure 4 presents the life cycle of transactions, which is
explained below.

BEGIN - Every transaction begins by a client request, and
when the request is received by the replicas, the transaction is
forwarded to the PTA. The PTA performs conflict analysis and

Algorithm 3 Byzantine Replica

1: upon: receive(〈PRE-PREPARE〉, T i, Ri, Ci, ORDER) from replicas
2: if (PRE-PREPARE was accept) then
3: for all (R ∈ QR minus his own replica) do
4: TO-Deliver(〈PREPARE〉, T, Ri, Ci)
5: end for
6: end if
7:
8: upon: receive(〈PREPARE〉, T i, Ri, Ci, ORDER) from replicas
9: if (PREPARE was accept) then

10: for all (R ∈ QR minus his own replica) do
11: TO-Deliver(〈COMMIT-ORDER〉, T i, Ri, Ci)
12: end for
13: end if
14:
15: upon: receive(〈COMMIT-ORDER〉, T i, Ri, Ci, ORDER) from replicas
16: if (COMMIT-ORDER was defined) then
17: BCO ← ORDER
18: Tx ← getFirst(BCO)
19: if ((Tx �= Ti) then
20: Call RE-EXEC (Ti, Ci)
21: else
22: if (Ti is running) then
23: wait Ti is committing
24: end if
25: Call CommitT (Ti, Ci)
26: end if
27: end if
28:
29: function RE-EXEC(Ti, Ci)
30: set Ti as running
31: begin execution
32: if (Ti to try commit) then
33: BCO ← BCO \ Ti
34: Call CommitT (Ti, Ci)
35: end if
36: end function

if there are not conflicts, the transaction is executed. If conflict
arises, the transaction is set to waiting state. Each transaction
is marked with an unique identifier UUID, which is created
by the client. The client can send only one request at a time
and has to wait for a response to send another request.

WAITING - Transactions on the waiting state are transac-
tions that contain data conflicts. After committing transactions
in the execution state, the first transaction in the waiting buffer
is sent to execution. If a transaction arises while there are
transactions in execution and if data conflict exists, it will be
put in waiting state; if not, the transaction will be executed.

EXECUTING - The transactions in this state are transac-
tions that have no data conflicts and are in execution. After its
execution, the transaction needs to commit the changes data.
When the protocol tries to commit the changed data, the replica
will send a message to its peers, asking permission to commit.
Afterward, the transaction goes to committing state.

COMMITTING - At this phase, replicas wait for (3f OK!)
reply messages to commit. If the requesting replica receive
less than 3f replies, or receive a non-permission (NOK!), the
Byzantine protocol is started. This phase has a timeout (line
53 algorithm 2) for prevent denial of service attack.

BYZANTINE - The Byzantine phase adopts PBFT [11] as
Byzantine Fault Tolerance. In case of out-of-order messages
or malicious replicas the Byzantine protocol initiates.

RE-EXEC - After Byzantine protocol execution, all replicas
receive an ordered set of transactions to be executed and
confirmed. Each replica needs to compare the order proposed
by the Byzantine protocol with its own list of transactions. In

14

case of differences, re-execution of transactions in the correct
order is necessary. Otherwise, re-execution is not necessary.

COMMITTED - Upon receiving (3f OK!) messages, trans-
action can be confirmed, and a response is sent to the client.
Then, the next transaction in the waiting state can start
execution.

Fig. 4. Life cycle of transaction

B. Local Verification

In previous works [3], [5], [6], local verification phase
occurs in commit time. Our approach does not use deferred
verification, we use anticipated verification instead. The Paral-
lel Transactions Analyzer (PTA) does this verification before
the transaction execution. The verification process is composed
by a comparison between transactions from the perspective of
the operations requested by it, which are listed on the writings
and readings sets (line 16 algorithm 2). Once the verification
is done, the transaction will be set to Executing or Waiting
state.

C. Global Verification

The global verification only occurs when the transaction
enters on the committing phase. In this phase a message
〈AskForCommit〉 is sent to all peers asking permission to
commit. If the requesting replica receives 3f confirmations
about the solicitation 〈AskForCommit〉, the commit can be
accomplished. Otherwise the Byzantine protocol needs to be
initiated for define the order of execution and commit of
transactions on all replicas.

The verification happens as the following: suppose that
all replicas are running a transaction denominated Tx. When
the replica R1 tries to commit the transaction Tx, a message

AskForCommit(Tx) is sent for all peers on the set
∏T

. Upon
receiving the request AskForCommit(Tx), the replica does the
following verifications: is the transaction Tx being executed?
If so, it returns OK!. Otherwise, the replica verifies if Tx
was committed, if confirmed it returns OK!. Otherwise, NOK!
is returned, which means that the transaction Tx can not be
committed.

D. Parallel Transactional Analyzer

Each new transaction that arrives on replicas is verified
with preceding outstanding transactions, and sent to execution
if it is not conflicting. The new request is put in a waiting state
if it has a conflict.

We say that two transactions are conflicting if the write-set
of one has at least one state variable in common with the write-
set or read-set of the other. More formally, we define conflict
as follows: Transaction Ti with write-set WS(Ti) and read-set

RS(Ti), and transaction Tj with write-set WS(Tj) and read-
set RS(Tj), are conflicting transaction if any of the following
conditions is true (1) (WS(Ti) ∩ RS(Tj) �= ∅), (2) (WS(Tj) ∩
RS(Ti) �= ∅) or (3) (WS(Ti) ∩ WS(Tj) �= ∅).

VI. EVALUATION AND RESULTS

We now show the results of an experiment and we evaluate
the performance achieved by the OB-STM. The tests were
made using a computer equipped with a Slackware Linux
2.6.37.6 SMP i686 Intel(R) Core(TM)2 Quad CPU Q9650
3.00GHz GenuineIntel GNU/Linux with 3GB memory. We
used an unique node with one socket for each replica in both
approaches. Digital signatures were used with keys of 512 bits
for the communication between clients and replicas.

The figures 5, 6, 7 and 8 represent the results of 20 seconds
of execution. The application was a shared counter and the
results were obtained of the average of three executions in-
creasing the counter. The clients were simulated using threads,
varying from 1 to 32. We do not compare D2STM and Zhang
work results with ours because we could not reproduce their
work.

Figure 5 compares OB-STM and Tazio, in the optimistic
case, considering one client making requests. In the cases with
up to seven replicas, OB-STM performs better than Tazio, what
changes according to the increasing number of replicas. The
decrease of OB-STM performance occurs because whenever
the number of replicas increase, more messages are exchanged
and the probability of messages being delivered on the same
order reduces. When out-of-order messages are delivered, the
Byzantine protocols needs to be started.

Fig. 5. Number committed transactions

In the analyzed cases, the protocol is tolerating one fault,
which requires four replicas.

The scalability is shown in Figure 6, where a high con-
tention scenario is evaluated. In this scenario the amount of
committed transactions is increased since the PTA previous
analysis allows the best decision to be taken. For example,
it is better to do a batch of conflicting transactions instead
of submitting each conflicting transaction to the execution,
because this reduces the overhead of the agreement protocol
[10].

15

Fig. 6. Scalability

The figure 7 shows the average of committed −
transactions/second. The average of committed transactions
is proportional to the number of clients, achieving a saturation
point at 32 clients.

Figure 8 depicts the number of committed −
transactions/client. Although the curve decreases as
the number of clients grow, the final result of committed
transactions using more clients is better than with fewer
clients. For example, the number of committed transactions
with two clients is 318 (average of 159.17 per client); with
four clients, 364 (average of 91.08 per client) transactions are
committed in total. The total number of committed transactions
increases by 46 in this case, despite the increasing contention.

Fig. 7. Transaction committed / second

Fig. 8. Transaction committed / client

VII. CONCLUSIONS

We present an Optimistic Byzantine Fault Tolerant ar-
chitecture for Software Transactional Memory. The proposed
protocol uses a Parallel Transactional Analyzer (section V-D)
to verify conflicts between transactions, which allows transac-
tions that does not conflict to be executed in parallel. As there
is a high probability that the messages are delivered ordered,
the protocol begins with an optimistic approach. Whenever
the messages are not ordered, the Byzantine protocol arranges
the transactions and executes them. On smaller scenarios
and using an optimistic approach, the protocol has a better
throughput then Tazio. When the number of replicas increases,
the protocol does not have better performance in regards
to Tazio. Because of the number of messages the protocols
requires, the performance of the protocol decreases while the
number of replicas increases.

Acknowledgments: Supported in part by Brazilian National
Research Council (CNPq) through process 560258/2010-0
and Coordination of Improvement of Higher Level Personnel
(CAPES) through process 400511/2013-4 PVE A039.

REFERENCES

[1] J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared mem-
ory: Concepts and systems,” Parallel & Distributed Technology: Systems
& Applications, IEEE, vol. 4, no. 2, pp. 63–71, 1996.

[2] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7,
no. 4, pp. 321–359, 1989.

[3] M. Couceiro and P. Romano, “D2STM: Dependable distributed software
transactional memory,” Dependable Computing, 2009. PRDC’09. 15th
IEEE Pacific Rim International Symposium on. IEEE, 2009., 2009.

[4] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and
I. Watson, “DiSTM: A Software Transactional Memory Framework for
Clusters,” 37th International Conference on Parallel Processing, pp.
51–58, Sep. 2008.

[5] A. Reale, E. Savioli, and A. Sorbini, “Tazio: Una Memoria Software
Transazionale Distribuita affidabile per Java,” 2010. [Online]. Available:
http://code.google.com/p/tazio

[6] D. Sciascia and F. Pedone, “RAM-DUR: In-Memory Deferred Update
Replication,” 2012 IEEE 31st Symposium on Reliable Distributed
Systems, pp. 81–90, Oct. 2012.

[7] H. Zhang and W. Zhao, “Concurrent Byzantine Fault Tolerance for
Software-Transaction-Memory Based Applications,” International Jour-
nal of Future Computer and Communication, vol. 1, no. 1, 2012.

[8] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann,
“Using optimistic atomic broadcast in transaction processing systems,”
Knowledge and Data Engineering, IEEE Transactions on, no. 4, 2003.

[9] F. Pedone and A. Schiper, “Optimistic Atomic Broadcast,” Distributed
Computing. Springer Berlin Heidelberg, no. 95, pp. 318–332, 1998.

[10] R. Kotla and M. Dahlin, “High throughput Byzantine fault tolerance,”
International Conference on Dependable Systems and Networks, 2004,
pp. 575–584, 2004.

[11] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
vol. 99, 1999, pp. 173–186.

[12] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory
transactions,” Science of Computer Programming, vol. 63, no. 2, pp.
172–185, 2006.

[13] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm with
eager validation,” in Distributed Computing. Springer, 2006, pp. 284–
298.

[14] R. Guerraoui and L. Rodrigues, Reliable Distributed Programming.
Springer Verlag, Berlin, 2006.

[15] L. Lamport and M. Fischer, “Byzantine generals and transaction commit
protocols,” Technical Report 62, SRI International, Tech. Rep., 1982.

16

